DRIVING THE FUTURE OF AUTOMOTIVE APPLICATIONS

Anytime, anywhere connectivity has extended to the vehicle. Advanced driver assist features and infotainment systems enhance the experience but place a greater demand for in-vehicle memory solutions.

Accelerated processing power and increased data storage capacity are the keys to enabling the next generation of automotive systems.

KIOXIA delivers flash-based products for next-generation storage applications.

Having invented NAND flash over 30 years ago, KIOXIA is now one of the world’s largest flash memory suppliers – and continues to move the technology forward.

Why UFS?

When compared to e-MMC, UFS delivers:

- Higher performance for reads and writes
- Faster boot times
- Support for full duplexing
- Added functions such as thermal control, extended diagnostics
- Higher density offerings
- An improved user experience

Supports a wide temperature range (-40°C to +105°C), meets AEC-Q100 Grade 2 requirements, contains advanced features such as Refresh, Thermal Control and Extended Diagnosis, and offers enhanced reliability capabilities.

KIOXIA Managed Flash for Automotive

<table>
<thead>
<tr>
<th>DENSITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8GB 16GB</td>
</tr>
<tr>
<td>32GB 64GB</td>
</tr>
<tr>
<td>128GB 256GB 512GB</td>
</tr>
</tbody>
</table>

1. Electrical component qualification requirements defined by the AEC (Automotive Electronics Council).
2. Advanced Driving Assistant System.
3. e-MMC is a product category for a class of embedded memory products built to the JEDEC e-MMC Standard specification.
4. Read and write speed may vary depending on the host device, read and write conditions, and file size.
5. Product density is identified based on the density of memory chips within the Product, not the amount of memory capacity available for data storage by the end user. Consumer-usable capacity will be less due to overhead data areas, formatting, bad blocks, and other constraints, and may also vary based on the host device and application. For details, please refer to applicable product specifications.
6. The definition of 1GB = 2^30 bytes = 1,073,741,824 bytes. The definition of 1TB = 2^40 bytes = 1,073,741,824,608 bytes. © 2020 KIOXIA America. Inc. All rights reserved.